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Abstract

In this paper, a number of important intertwined questions will be
explored. The central question is, what chaos tells us about whether or
not the world behaves deterministically. To begin with, chaos must be
defined. Next, the relation between models of the world and the world
itself must be understood. This involves determining what a model
is, and how it can relate and refer to the world. A description of how
we attribute chaos to the world, or to the model, is given. Also, the
relation between quantum mechanics and chaotic phenomena is ex-
plored. In effect, ellements of chaos theory can form a bridge between
the quantum realm and macroscopic systems. One can therefore use
chaos theory to translate the question of determinism on any level of
reality to one about the correct interpretation of quantum theory.

1 Introduction

Chaos theory simply studies a certain class of dynamical systems
which arise quite naturally within mathematics and its applications.
A property of these systems is that they are in fact deterministic,
that is: the evolution of the system is the same iff the initial condi-
tions are the same. But then we have quantum theory stating that
on a fundamental level, initial conditions cannot determined with ar-
bitrary precision. Here we have tragedies blows at horizon: it seems
that the physical universe itself probabilistic, i.e. essentially undeter-
mined. This raises the question whether or not there is in essence a
chaotic aspect of Nature.
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In this essay we will concern ourselves with some philosophical
aspects of chaos. The central questions are: Is chaos an essential and
intrinsic feature of Nature, or is chaos merely a part of our models?
That is: what can we say about the ontological status of chaos in the
physical world? In order for us to give sensible answers we need to
come to terms about the concept of chaos, i.e. what do we call chaos
or chaotic behavior. Although the concept of chaos is intuitively quite
easily grasped, giving a formal definition turns out to be somewhat
problematic. Chaos arises when we make a mathematical model of
systems in the physical world. It seems clear that this chaotic behavior
is a part of the model, but is it also an essential part of the system
to which the model refers? In order to answer this question we need
to understand and be clear about what models are, how they refer to
the the real world and to which part or subsystems of Nature they
are referring. Then we will take a closer look at how we attribute
chaos through these models to physical reality. Chaos theory could
also function as a bridge between the classical and the quantum scales
of reality.

2 What is Chaos?

What makes a chaotical dynamical system different from a non-chaotical one?
Qualitatively, chaotic behaviour is thought to occur in systems which are
unusually sensitive to initial conditions, and exhibit unstable and aperiodic
behaviour. This can only be a property of non-linear equations. So all chaotic
models contain non-linear equations. The properties of sensitivity to initial
conditions and of unstable and aperiodic dynamics can be properly defined
using rspectively

There are various definitions of chaos available and they each focus on
more or less their own type of dynamical system. For an example of the vari-
ety of definitions for chaos in dynamical systems see [4], wherein the following
types of definitions for chaos are listed: Li-Yorke chaos, Experimentalists’
definition, Devaney’s definition, Wiggins definition and Martelli’s definition.
In this section we start out by looking at some qualitative aspects of chaos
and then we turn to see how chaos in dynamical systems is defined. By do-
ing this we hope to take some steps towards answering the question whether
chaos is actually an aspect of physical reality or just part of our models.

The most general qualitative definition of chaos is ”unstable aperiodic
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behaviour in deterministic nonlinear dynamical systems” [1]. This definition
restricts chaos to be only an aspect of certain dynamical systems. It is this
kind of behaviour that is characteristic of chaos, and by arguments about
models in general we suspect that it is actually an aspect of certain physical
systems.

Another qualitative aspect of chaos is that it renders long-term prediction
of the system impossible, i.e. the system appears to behave in a random fash-
ion. In [3] two attempts of defining chaos through this randomness aspect are
discussed. Note that if a system would exhibit only predictable behaviour
then we would not characterize it as chaotic, and therefore apperant random-
ness or unpredictability is a necessary condition for chaotical systems, but
according to Batterman it is not sufficient. It is argued that for continuously
evolving Hamiltonian systems (system where the energy is reserved), e.g.
throwing a die or a table of roulettes, we have complete predictability in the
model, and thus randomness is not really an aspect of the system. Others
claim that the randomness aspect is brought in via the initial conditions of
the system. If the initial conditions consist of non-computable (algorithmi-
cally random) numbers then the dynamical system displays the randomness
from it’s initial conditions. This claim does not hold very well, since, if we
restrict the tent map to the computable reals in a bounded interval we still
find chaotic behaviour [?].

In the next section we will discuss the problem of defining chaos in a
formal way.

2.1 Terminology

In order for us to be (as) clear (as we can) on what we mean by chaos in dy-
namical systems, we should treat dynamical systems first. We present some
definitions and some nice theorems about dynamical systems. A dynamical
system can be thought of as a description of the evolution of points in some
space, often called the state space. Here we discuss two types of dynamical
systems: smooth and discrete dynamical systems.

Definition 2.1 (Dynamical System). A dynamical system is a set S called
the statespace, a monoid (I,+, 0) called evolution paramater space and a
function, φ : U ⊂ I × S → S, which satisfies:

1. φ(0, x) = x the identity function on M
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2. φ(t, φ(s, x)) = φ(t+ s, x) for every t, s ∈ I such that t+ s ∈ I.

In the context of chaos this definition is a little too abstract; we have for
instance no direction of time, but it is the most general form of the concept
of dynamical system that we could think of. We give the definition for a
smooth dynamical system (from: [2]):

Definition 2.2 (Smooth Dynamical System). A smooth dynamical system
on Rn is a continiously differentiable function φ : R × Rn → Rn, where
φ(t, x) = φt(x) satisfies:

1. φ0 is the identity function on Rn

2. The composition φt ◦ φs = φt+s for each t, s ∈ R

Definition 2.3. Discrete Dynamical System A discrete dynamical system on
Rn is a function φ : Z× Rn → Rn, where φ(t, x) = φt(x) satisfies:

1. φ0 is the identity function on Rn

2. The composition φt ◦ φs = φt+s, for each t, s ∈ Z.

Note that from the definition of discrete dynamical system it follows by
induction that it is of the form φ(n, x) = φn(x), the nth iterate of φ on x.
Often one writes φt(x) instead of φ(t, x). Since we are interested in chaos,
we should of course be looking at nonlinear dynamical systems. A dynamical
system is linear if the function is linear in the statespace, and a dynamical
system is nonlinear if it is not linear. We can now define what we mean by
a deterministic dynamical system.

Definition 2.4 (Deterministic Dynamical System). A dynamical system is
deterministic if every state is always followed by the same trajectory.

Using the fact that smooth and discrete dynamical systems use functions
the determine the evolutions of a point we conclude that both smooth and
discrete dynamical systems are deterministic.

Another important notion is the notion of Orbit of a point in a dynamical
system:

Definition 2.5 (Orbit). The orbit O(x) of a point x in the statespace of a
dynamical system φt(x) is defined as the set: O(x) := {φ(t, x) | t ∈ I}, where
I is the evolution parameter space.
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The orbit of a point in the statespace of a system is the time evolution
of that point within the system. An orbit O(x) is periodic if there is some
T such that φt+T (x) = φt(x), for every t. The period is the smallest possible
T such that the previous equation holds. For discrete dynamical systems
the forward orbit of a point x is defined as {φn(x) | n = 0, 1, 2, . . .}, and in
smooth dynamical systems it is defined as {φ(t, x) | t ≥ 0}.

Note that for smooth and discrete dynamical systems the evolution or the
orbit of a point of the system is completely determined by the initial values
of the system. We claim that if we have that φ(t, x) = φ(t′, x′), then we have
O(x) = O(x′). Which is demonstrated as follows: Let y ∈ O(x), or in other
words y = φ(t1, x) for some t1. Using the assumption and writing t = t1− t′1
we have y = φ(t1, x) = φ(t + t′1, x) = φ(t′1, φ(t, x)) = φ(t′1, φ(t′, x′)) ∈ O(x′),
and hence O(x) ⊂ O(x′). Interchanging x with x′ and t with t′ yields O(x′) ⊂
O(x). In other words intersecting orbits are equal, or the orbits form a
partition of the statespace.

2.2 Defining Chaos

Most definitions of Chaos in a dynamical system include the notions of sensi-
tive dependance (on initial conditions), (a)periodic orbits and/or aperiodicity
and topological transitivity. We will explain these notions and then discuss
some popular defintions.

Sensitive Dependance (SD) in a system is characterized by that a small
difference in initial conditions of a system yields a vast difference in evolution
of the system. There are mainly two types of Sensitive Dependance, the Weak
Sensitivity Dependance and the Strong Sensitivity Dependance.

They can be formally defined as [1]:

Definition 2.6 (Weak Sensitivity Dependance). A dynamical system φt(x)
has WSD if there is an ε > 0 such that for every δ > 0 and every x0 there
exists a y0 and a t > 0 such that: |x0 − y0| < δ and |φt(x0)− φt(y0)| > ε.

This definition tells us that for every two different but arbitrary close
initial conditions, the evolutions of the system will, at some time t, differ
more than some non-zero value.

Definition 2.7 (Strong Sensitivity Depandance). A dynamical system φt(x)
has SSD if there is a λ such that almost all x0 we have: for all δ > 0
there is a t > 0 such that for all y0 in a small neighbourhood of x0 we have
|φt(x0)− φt(y0)| ≈ |x0 − y0|eλt.
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The λ in this definition is called the Lyapunov exponent. If the Lyapunov
exponent is greater than zero, then this definition tells us that for almost
every two different but arbitrary close initial conditions, the evolutions of the
system will diverge exponentially. The ”for almost all” means ”except for a
subset with measure zero”. Both of these definitions can, in a straightforward
way be translated to the case of discrete dynamical systems.

Another characteristic feature of Chaotic Dynamical systems is topolog-
ical transitivity.

Definition 2.8 (Topological Transitivity/Mixing). A continous surjective
map f : M →M is topologically transitive if for every two open sets U, V ⊂
M there is a n ∈ N such that fn(U)∩ V 6= ∅. If there is an N ∈ N such that
for all n > N we have fn(U)∩ V 6= ∅, then f is called topologically mixing.

Now we are equipped with enough terminology to discuss a definition of
chaos. The following definition applies only to discrete dynamical systems.

A famous definition of Chaos is Devaney’s Definition of Chaos:

Definition 2.9 (Devaney’s Definition of Chaos). A map F : X → X is
Chaotic if the following hold:

1. F is topologically transitive in X

2. F has sensitive dependance in X

3. The set P of periodic orbits of F is dense in X.

In [6] this definition is shown to be redundant; the following theorem is
presented. Of course the proof is due to [6], but we resate it and fill in some
of the details.

Theorem 2.10. Let (X, d) be a metric space and f : X → X a continous
bijection. If f is topologically transitive and the set of periodic points is dense
in X then f has (weak) sensitive dependence on initial conditions.

Proof. Assume that f : X → X is topologically transitive and has sensitive
dependence on initial conditions on X.

First we claim that there is a δ0 > 0 such that for any x ∈ X we can
find a periodic point q ∈ X such that x has at least distance δ0

2
to O(q).

This can be seen as follows: Let p, q be periodic points in X such that the
orbits O(p), O(q) are disjoint. Let δ0 denote the minimum distance between
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O(p) and O(q). By the triangle inequality it follows that for every x ∈ X,
p′ ∈ O(p) and q′ ∈ O(q) we have

δ0 ≤ d(p′, q′) ≤ d(p′, x) + d(x, q′).

Taking the minimum over p′ ∈ O(p), q′ ∈ O(q) yields

δ0 ≤ min
p′
d(p′, x) + min

q′
d(x, q′).

Hence every x ∈ X has at least distance δ0
2

to one of the orbits O(p), O(q).
This demonstrates the claim, and we now return to the proof of the main
statement: we will show that f has sensitive dependence with sensitivity
constant δ = δ0

8

Let x be an arbitrary point in X and let Ux be some neighbourhood of
x. Consider the open set U = Ux ∩ Bδ(x). Since the periodic points of f
are dense in X, there is a periodic point p ∈ U of f with period n. By the
previous claim, we can find a periodic q ∈ X such that the distance between
x and O(q) is at least 4δ. Consider the following set:

V =
n⋂
i=0

f−i(Bδ(f
i(q)).

First note that V is non-empty; we have that q ∈ f−i(Bδ(f
i(q))) for every

i = 0, 1, . . . , n. Since f is continous we have that all the f−i(Bδ(f
i(q))) are

open and since V is a finite intersection, V is itself open. Recall that n is the
period of p ∈ U . Because f is topologically transitive, there exists a y ∈ U
and a k ∈ N such that fk(y) ∈ V . Let j denote the integer part of k/n + 1;
since n ≥ 1 and j ≥ 1 we have 1 ≤ nj − k ≤ n. By construction of V we
have:

fnj(y) = fnj−k(fk(y)) ∈ fnj−k(V ) ⊂ Bδ(f
nj−k(q)).

Also we have that fnj(p) = p. Subsequent application of the reverse triangle
inequality yields:

d(fnj(p), fnj(y)) = d(p, fnj(y))

≥ d(x, fnj(y))− d(x, p)

≥ d(x, fnj−k(q))− d(fnj−k(q), fnj(y))− d(x, p)

> 4δ − δ − δ = 2δ.
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The last strict inequality follows from the following: q was chosen such that
x has a distance of at least 4δ to O(q), and thus d(x, fnj−k(q)) ≥ 4δ, morover
since p ∈ Bδ(x) and fnj(y) ∈ Bδ(f

nj−k(q)) we also have d(p, x) < δ and
d(fnj−k(q), fnj(y) < δ. Using the triangle inequality yet once more, we find:

d(fnj(p), fnj(x)) + d(fnj(x), fnj(y)) > 2δ

and thus either d(fnj(p), fnj(x)) > δ or d(fnj(x), fnj(y)) > δ is the case. In
any case we have found a point in Ux whose njth iterate has distance greater
than δ from fnj(x). In other words: f has sensitivity of initial conditions on
X.

If the sensitive dependence on initial conditions requirement is removed
from the definition, it becomes less intuitive that this definition has to do
with chaos. A reformulation of the two essential properties can be given, as
seen in [5]. There it is said that, under the same conditions as in Devaney’s
definition, a map f is chaotic if for every two non-empty open U, V ⊂ X
there is a periodic point p ∈ U and a k ∈ N such that fk(p) ∈ V . Then it is
shown that f is chaotic in this sense if and only if f is topologically transitive
and that it’s periodic points are dense in X.

Now we have seen that it is quite possible to give a definition of chaos
in the context of deterministic dynamical systems. Although the definitions
presented here only apply to discrete dynamical systems, we are confident
that a definition of chaos for smooth dynamical systems can be given. Even
though we were unable to find such a defintion or to give one, we assume
that it can be done. By defining chaos we should have convinced the reader
that it exists in the formal framework of dynamical systems, and therefore
that it is truly a part of some of our models. The question of whether or not
chaos exists in the physical world is now shifted to the question of how one
attributes the features of a model to the physical world.

3 What is a Model? [7]

Models are supposed to be about things in the world. In order to do this,
they must be able to refer to the world. How is this done? And what is the
relation between a model ande a system? These are the questions that wil
be explored next.
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There are basically two general ideas about what scientific theories are [8].
In the syntactic view, a theory is a set of sentences in an axiomatic structures
in a first-order logic. In this view, a model is just another way of saying
the same thing a theory can say, models are therefore of no fundamental
importance in science. According to the semantical view of theories and
models, a theory is basically a collection of models. The axiomatization of
what these models have to say, can be dispensed with without losing the
relevant science. A model can be regarded as either a linguistical thing, or as
non-linguistic entities. The linguistic approach sees models as descriptions
that have some form of reference to the outside world. This inherrits all the
philosophical problems of the Philosophy of Language. The alternative is
faced with the question what a reference of a model is, if a model is not a
linguistical entity. Models can exist in various forms. They can be seen as
physical objects or fictional objects. More ways to think of models to exist
are as set-theoretic structures, descriptions, equations or as a combination of
these.

When this is applied to models in chaos theory, we have to look at how the
underlying theories are represented in specific models that describe systems.
It seems the case that most theories, seen as axiamatized structures, do not
have the property inpredictability. The models we build with our theories do
have this property, if combined with the fact that we do not have infinitely
precise knowledge of the initial conditions. If this is true, then the realist
will have to choose between realism towards the theory, or realism towards
the model. If the first option is followed, it can be maintained that chaos is
a property of the model alone, and not of the world. If, on the other hand,
models are considered to represent real entities (instead of axiomatized the-
ories), then chaos is a verry real phenomenon and the theories alone cannot
be representative for the state of affairs out there.

From a physicalistical point of view, models are both invaluable devices,
and problematic entities. Scientific models tell us what the world is like,
without containing teleological or spiritual notions. They therefore can form
some kind of justification for the physicalist, which is indispencible. In a
different way, however, they are troublesome. Since models must be concid-
dered as existing objects, they themselves are part of the (physical) reality.
However, many philosophers wondered how something purely physical can
refer to other physical things. It is said that models refer by analogy or some
kind of isomorphism, it seems that these concepts are extremely vague. The
problem of reference is particularly accute here.
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4 Chaos, Quantum Mechanics and Determin-

ism

It seems possible that chaos in models is, on first account, not inconsistent
with determinism. After all, if the Laplacian demon can classically know
all about the world with infinite precission, he wouldn’t even notice whether
there is chaos in the world or not. However, this way of thinking about mat-
ters might have to be abandened in the light of some properties of quantum
mechanics. According to the Heisenberg uncertainty principle, information
belonging to non-commuting operators cannot simultaniously be known to
an arbitrary degree. This would mean that a state with all logically possi-
ble information specified, is physically impossible. It must be remembered,
though, that this version of a quantum property of the world relies on the
Copenhagen interpretation of quantum theory. There is still a lively debate
in the philosophy of science about what quantum physics really tells us [?].
Ian Stewart explaines why someone like Einstein, who was a determinist,
would have liked the idea of understanding quantum mechanical phenom-
ena as examples of classical chaos. After all, there can still be determinism
in this case, and there is no need for a probabilistical interpretation in the
vein of pressent-day quantum mechanics. According to Stewart, the best
place to start looking for a revission in Q.M. is the lack of a clear theoretical
description of what happens when a measurement is made in a quantum sys-
tem. In a measurement, there is always one outcome. The quantum state,
however, is a superposition. Therefore measurement of a quantum system is
only possible with a macroscopic aparatus, this is precisely the Copenhagen
interpretation with the ”collapse of the wavefunction”. One might remark,
however, that the difference in size of the quantum system with respect to
the measuring device is only a relative difference, not absolute. Quantum
mechanics should be about all systems, not just about small things. Fur-
thermore, the Copenhagen interpretation of Quantum mechanics neglects
the dynamical evolution of the wavefunction when system is measured; the
”collapse of the wavefunction” is an instantaniously occuring phenomenon.
Stewert also discusses the Einstein-Podoski-Rosen paradox. This entails the
difficulty of non-locality when ”entangled” particles are conciddered. A pos-
sible solution for the problems, and therefore an alternative of, the Copen-
hagen interpretation is the mathematical formalism of David Bohm. Instead
of introducing the concept of the collapse of the wavefunction, Bohm argued
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that all particles in the universe obey the Schrödinger equation. In addi-
tion, he introduced equations that describe our ignorence of the state of the
system, and those that describe the movement of the particle as a function
of the wavefunction. The combination of these properties makes Bohm’s
framework totally deterministic. Stewart argues that Bohm’s work has been
neglected by the physical community without good reasons. Agaist the idea
of hidden variables, which would explain our incomplete knowledge of a state
in a deterministical fashion, the Bell’s inequallity was conceived. The Bell’s
inequality can be constructed using a thought experiment in the following
way, following Stewart’s book. When two spin 1

2
particles are produced in

an entangled state, the spin orintation of each particle can be measured in
one direction. Under the assumption of locality and determinism, a relation
that describes the correspondence between erach of the spin measurements
and the angle in which the spin of one electron is measured relative to the
measurement of the other spin measurement, can be derived. This is known
as Bell’s inequality [?]:

1 + C(b, c) ≥ |C(a, b)− C(a, c)|,

in which C is the correlation of the spin measurements of two sets of electrons
at different relative angles a, b, and c. This inequality is inconsistent with
quantum mechanical predictions, and inconsistent with experiments. It is to
be concluded that eiter determinism, or locality, or both, fail.

Independent of our interpretation of quantummechanics, however, chaos
is manifest in many systems in the semi-classical and the non-classical domain
([9], chapter 10). The semiclassical domain is a crossover region between the
classical and the non-classical realms. A question of particular importance
is: what implications does chaotical classical dynamics have for the quantum
description of a system in the semiclassical regime? This question can be elu-
minated using a classical example which resembles the schrödinger equation.
The Helmolz wave equation resembles the Schrödinger equation, as described
in [9]: ∇2Ψ + k2Ψ = 0, where k is the wavenumber. If the correspondence is
worked out in detail, the conclusion is that chaotic features of the classical
case can help to say something of the semiclassical, and even of the quantum
mechanical case.

The relation between quantum mechanics and chaos is intriguing. Some
argue that since quantummechanical phenomena only manifest themselves in
the realm of the microscopic, an interpretation of quantum mechanics cannot
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influence the idea of (in)determinism in macroscopic systems. However, it
is confirmed that infinitesimal quantum effects on the subatiomic level can
eventually influence macroscopical systems. This idea, closely linked with
the stability number of mappings, might argue for a genuine indeterministic
account of chaotic processes. Thus chaos turns out to form a bridge from
the microscopic to the macroscopic. Finding out the correct interpretation
of quantum mechanics then becomes essential.

5 Wittgenstein and the Tractatus Logico-

Philosophicus

It is necessary to clarify what we mean exactly by determinism. It seems
natural that you can see determinism as either a property of our models, or
as a property of the natural world (or both). In 1922, Wittgenstein published
his influential work on language and the world. His paper is an example of a
syntactic view on science. It is not neccessary to treat his early philosophy
here, in order to clarify an important aspect of the notion of determinism.
Wittgenstein looks upon the logically deducability of propositions as uniquely
dependent upon the truth functions of these propositions. It is redundent
to postulate ”rules of inference”, which would justify this deducing, because
the meaning of mutual deducible propositions is such that the deducability
is internal to the propositions. When this is applied to two propositions that
are said to represent two different states of affairs in the world, it seems
obvious that they have a different truth-value. Therefore, unlike the case of
two logically derivable propositions, the meaning of the two descriptions of
states does not entail any connection between them. In particular, any causal
chain which might be said to exist between the propositions, is not internal
to the propositions, but alwys something external to it (something we add to
it). Therefore, Wittgenstein concludes, to say that one state of affairs causes
another is ”superstition” [10, 5.132-5.161]. This shows, that if you agree
with Wittgenstein, any notion of determinism which relies on ”linguistical”
causality (the causal relation between the meanings of sentences) must be
abandoned. It therefore cannot be maintained that determinism in dynamical
systems is a logical relation between propositions that express different states
of affairs. To speak of another kind of determinism would deffenitely not be
advised by Wittgenstein, because all we can talk about are linguistical items.
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Still, his view leaves open the possibility of determinism ”in nature”, though
such a view would be a metaphysical statement. We can see, however, that
Wittgenstein himself was some kind of a determinist, in so far as he thought
that the human mind does not have the capacity to change the physical
reality [10].

6 Conclusion

We have seen that chaos can be formally defined within the context of dy-
namical systems.

Smooth and discrete dynamical systems are deterministic in the sense
that same points in the statespace are always followed by the same states-
pace trajectory. We have seen that via the (early) philosophy of Ludwig
Wittgenstein determinism should not be thought of as if it would entail a
logical relation between propositions.

How to interpret chaos as a property of models is without significant
problems, how to interpret it as a property of physical reality remains prob-
lematic although it can be clarified if viewed in the light of the discussion of a
semantic versus syntactic interpretation of science. The authors uphold the
syntactic view on science. However insofar the models are logically derived
from the postulates and the specific boundary conditions, they bear signifi-
cance as scientific objects. Models are then considered to be exstensions of
the theory and their properties are not considered to be primary but their
propositional content displays information about the world. In good science
certain sets of initial conditions are consistent with the postulates of a theory
and it is to be understood that models are obtained by filling in the boundary
conditions of the target system.

The unpredictability of chaotic dynamical systems is not a logical conse-
quence of the postulates of the theory, unless impossibility of perfect knowl-
edge of states of affairs is a logical consequence of the postulates.

Since there exist various examples of chaotic dynamical systems in science,
we are forced to conclude that our best postulates entail chaos under certain
boundary conditions.

Furthermore we have been able to reduce the question of determinism
to a question of the correct interpretation of quantum physics. As far as
the authors are concerned the question whether the indeterministic nature
of quantum phenomena is a real aspect of nature is not yet settled. We have
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seen that the Copenhagen interpretation is problematic in the description
of the measurement. We conclude that an open mind should be maintained
towards other interpretations of quantum mechanics, and therefore towards
determinism on any scale of reality.
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